Globally convergent edge-preserving regularized reconstruction: an application to limited-angle tomography

نویسندگان

  • Alexander H. Delaney
  • Yoram Bresler
چکیده

We introduce a generalization of a deterministic relaxation algorithm for edge-preserving regularization in linear inverse problems. This algorithm transforms the original (possibly nonconvex) optimization problem into a sequence of quadratic optimization problems, and has been shown to converge under certain conditions when the original cost functional being minimized is strictly convex. We prove that our more general algorithm is globally convergent (i.e., converges to a local minimum from any initialization) under less restrictive conditions, even when the original cost functional is nonconvex. We apply this algorithm to tomographic reconstruction from limited-angle data by formulating the problem as one of regularized least-squares optimization. The results demonstrate that the constraint of piecewise smoothness, applied through the use of edge-preserving regularization, can provide excellent limited-angle tomographic reconstructions. Two edge-preserving regularizers-one convex, the other nonconvex-are used in numerous simulations to demonstrate the effectiveness of the algorithm under various limited-angle scenarios, and to explore how factors, such as the choice of error norm, angular sampling rate and amount of noise, affect the reconstruction quality and algorithm performance. These simulation results show that for this application, the nonconvex regularizer produces consistently superior results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-Scale Wavelet Domain Residual Learning for Limited-Angle CT Reconstruction

Limited-angle computed tomography (CT) is often used in clinical applications such as C-arm CT for interventional imaging. However, CT images from limited angles suffers from heavy artifacts due to incomplete projection data. Existing iterative methods require extensive calculations but can not deliver satisfactory results. Based on the observation that the artifacts from limited angles have so...

متن کامل

Globally Convergent Ordered Subsets Algorithms: Application to Tomography

We present new algorithms for penalized-likelihood image reconstruction: modified BSREM (block sequential regularized expectation maximization) and relaxed OS-SPS (ordered subsets separable paraboloidal surrogates). Both of them are globally convergent to the unique solution, easily incorporate convex penalty functions, and are parallelizable—updating all voxels (or pixels) simultaneously. They...

متن کامل

Implementation of edge-preserving regularization for frequency-domain diffuse optical tomography.

In this study, we first propose the use of edge-preserving regularization in optimizing an ill-conditioned problem in the reconstruction procedure for diffuse optical tomography to prevent unwanted edge smoothing, which usually degrades the attributes of images for distinguishing tumors from background tissues when using Tikhonov regularization. In the edge-preserving regularization method pres...

متن کامل

Optimization for limited angle tomography in medical image processing

This paper aims to reduce the problems of incomplete data in computed tomography, which happens frequently in medical image process and analysis, e.g., when the high-density region of objects can only be penetrated by X-rays at a limited angular range. As the projection data are available only in an angular range, the incomplete data problem can be attributed to the limited angle problem, which...

متن کامل

Globally convergent edge-preserving reconstruction with contour-line smoothing

The standard approach to image reconstruction is to stabilize the problem by including an edge-preserving roughness penalty in addition to faithfulness to the data. However, this methodology produces noisy object boundaries and creates a staircase effect. The existing attempts to favor the formation of smooth contour lines take the edge field explicitly into account; they either are computation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE transactions on image processing : a publication of the IEEE Signal Processing Society

دوره 7 2  شماره 

صفحات  -

تاریخ انتشار 1998